0

CO2 Hydrogenation Catalysis

eBook

Erschienen am 19.03.2021, Auflage: 1/2021
133,99 €
(inkl. MwSt.)

Download

E-Book Download
Bibliografische Daten
ISBN/EAN: 9783527824106
Sprache: Englisch
Umfang: 320 S., 16.71 MB
E-Book
Format: EPUB
DRM: Adobe DRM

Beschreibung

A guide to the effective catalysts and latest advances in CO2 conversion in chemicals and fuels

Carbon dioxide hydrogenation is one of the most promising and economic techniques to utilize CO2 emissions to produce value-added chemicals. With contributions from an international team of experts on the topic,CO2 Hydrogenation Catalysis offers a comprehensive review of the most recent developments in the catalytic hydrogenation of carbon dioxide to formic acid/formate, methanol, methane, and C2+ products.

The book explores the electroreduction of carbon dioxide and contains an overview on hydrogen production from formic acid and methanol. With a practical review of the advances and challenges in future CO2 hydrogenation research, the book provides an important guide for researchers in academia and industry working in the field of catalysis, organometallic chemistry, green and sustainable chemistry, as well as energy conversion and storage. This important book:

Offers a unique review of effective catalysts and the latest advances in CO2 conversionExplores how to utilize CO2 emissions to produce value-added chemicals and fuels such as methanol, olefins, gasoline, aromaticsIncludes the latest research in homogeneous and heterogeneous catalysis as well as electrocatalysisHighlights advances and challenges for future investigation

Written for chemists, catalytic chemists, electrochemists, chemists in industry, and chemical engineers,CO2 Hydrogenation Catalysis offers a comprehensive resource to understanding how CO2 emissions can create value-added chemicals.

Autorenportrait

Yuichiro Himedais a prime senior researcher at the National Institute of Advanced Industrial Science and Technology in Japan.

Inhalt

Preface xi

1 Introduction 1
Yuichiro Himeda and Matthias Beller

1.1 Direct Use of CO2 1

1.2 Chemicals from CO2 as a Feedstock 2

1.3 Application and Market Studies of CO2 Hydrogenation Products 4

1.3.1 Formic Acid/Formate 4

1.3.2 Methanol 4

1.3.3 Methanation 5

1.3.4 Energy Storage 6

1.4 Supply of Materials 6

1.4.1 CO2 Supply 6

1.4.2 Energy and H2 Supply 8

1.5 Political Aspect: Tax 9

1.6 Conclusion and Perspectives 9

References 10

2 Homogeneously Catalyzed CO2Hydrogenation to Formic Acid/Formate by Using Precious Metal Catalysts 13
Wan-Hui Wang, Xiujuan Feng and Ming Bao

2.1 Introduction 13

2.2 Ir Complexes 14

2.2.1 Ir Complexes withN,N-ligands 14

2.2.1.1 TautomerizableN,N-ligands with OH Groups 14

2.2.1.2N,N-ligands with NH Group 30

2.2.1.3 TautomerizableN,N-ligands with OH and NH Groups 32

2.2.1.4 TautomerizableN,N-ligands with Amide Group 33

2.2.2 Ir Complexes withC,N- andC,C-ligands 34

2.2.3 Ir Complexes with Pincer Ligands 35

2.3 Ru Complexes 37

2.3.1 Ru Complexes with Phosphorous Ligands 38

2.3.2 Ru Complexes withN,N- andN,O-ligands 40

2.3.3 Ru Complexes with Pincer Ligands 41

2.4 Rh Complexes 46

2.5 Summary and Conclusions 49

References 49

3 Homogeneously Catalyzed CO2Hydrogenation to Formic Acid/Formate with Non-precious Metal Catalysts 53
Luca Gonsalvi, Antonella Guerriero and Sylwia Kostera

3.1 Introduction 53

3.2 Iron-Catalyzed CO2 Hydrogenation 55

3.2.1 Non-pincer-Type Iron Complexes 56

3.2.2 Pincer-Type Iron Complexes 63

3.3 Cobalt-Catalyzed CO2Hydrogenation 69

3.4 Nickel-Catalyzed CO2Hydrogenation 73

3.5 Copper-Catalyzed CO2Hydrogenation 77

3.6 Manganese-Catalyzed CO2Hydrogenation 78

3.7 Other Non-precious Metals for CO2Functionalization 81

3.8 Conclusions and Perspectives 85

References 86

4 Catalytic Homogeneous Hydrogenation of CO2to Methanol 89
Sayan Kar, Alain Goeppert and G. K. Surya Prakash

4.1 Carbon Recycling and Methanol in the Early Twenty-First Century 89

4.2 Heterogeneous Catalysis for CO2to Methanol 91

4.3 Homogeneous Catalysis An Alternative for CO2to Methanol 92

4.3.1 Benefits of Homogeneous Catalysis 92

4.3.2 CO2Hydrogenation to Methanol Through Different Routes 92

4.3.3 The First Homogeneous System for CO2Reduction to Methanol 93

4.3.4 Indirect CO2Hydrogenation 94

4.3.5 Direct CO2Hydrogenation 97

4.3.5.1 Through Formate Esters 97

4.3.5.2 Through Oxazolidinone or Formamides 100

4.3.6 CO2to Methanol via Formic Acid Disproportionation 108

4.4 Conclusion 109

References 110

5 Theoretical Studies of Homogeneously Catalytic Hydrogenation of CarbonDioxide and Bioinspired Computational Design of Base-Metal Catalysts 113
Xiuli Yan and Xinzheng Yang

5.1 Introduction 113

5.2 H2 Activation and CO2Insertion Mechanisms 114

5.2.1 Hydrogen Activation 114

5.2.2 Insertion of CO2 115

5.3 Hydrogenation of CO2to Formic Acid/Formate 118

5.3.1 Catalysts with Precious Metals 118

5.3.2 Catalysts with Non-noble Metals 128

5.4 Hydrogenation of CO2to Methanol 133

5.5 Summary and Conclusions 142

References 145

6 Heterogenized Catalyst for the Hydrogenation of CO2to Formic Acid or Its Derivatives 149
Kwangho Park, Gunniya Hariyanandam Gunasekar and Sungho Yoon

6.1 Introduction 149

6.2 Molecular Catalysts Heterogenized on the Surface of Grafted Supports 150

6.3 Molecular Catalysts Heterogenized on Coordination Polymers 157

6.4 Molecular Catalysts Heterogenized on Porous Organic Polymers 161

6.5 Concluding Remarks and Future Directions 172

References 173

7 Design and Architecture of Nanostructured Heterogeneous Catalysts for CO2Hydrogenation to Formic Acid/Formate 179
Kohsuke Mori and Hiromi Yamashita

7.1 Introduction 179

7.2 Unsupported Bulk Metal Catalysts 180

7.3 Unsupported Metal Nanoparticle Catalysts 181

7.3.1 Metal Nanoparticles Without Stabilizers 181

7.3.2 Metal Nanoparticles Stabilized by Ionic Liquids 182

7.3.3 Metal Nanoparticles Stabilized by Reverse Micelles 183

7.4 Supported Metal Nanoparticle Catalysts 184

7.4.1 Metal Nanoparticles Supported on Carbon-Based Materials 184

7.4.2 Metal Nanoparticles Supported on Nitrogen-Doped Carbon 185

7.4.3 Metal Nanoparticles Supported on Al2O3 189

7.4.4 Metal Nanoparticles Supported on TiO2 191

7.4.5 Metal Nanoparticles Supported on Surface-Functionalized Materials 194

7.5 Embedded Single-Atom Catalysts 198

7.6 Summary and Conclusions 202

References 203

8 Heterogeneously Catalyzed CO2Hydrogenation to Alcohols 207
Nat Phongprueksathat and Atsushi Urakawa

8.1 Introduction 207

8.2 CO2Hydrogenation to Methanol Past to Present 207

8.2.1 Syngas to Methanol 207

8.2.2 CO2to Methanol 208

8.2.3 Thermodynamic Consideration Chemical and Phase Equilibria 212

8.2.4 Catalyst Developments 215

8.2.5 Active Sites and Reaction Mechanisms: The Case of Cu/ZnO Catalysts 217

8.2.6 Beyond Industrial Cu/ZnO/Al2O3 Catalysts 223

8.3 CO2Hydrogenation to Ethanol and Higher Alcohols Past to Present 226

8.3.1 Background 226

8.3.2 Catalysts, Active Sites, and Reaction Mechanisms 227

8.3.2.1 Modified-Methanol Synthesis Catalyst 227

8.3.2.2 Modified FischerTropsch Catalysts 230

8.3.2.3 Rhodium-Based Catalysts 231

8.3.2.4 Modified Molybdenum-Based Catalysts 232

8.4 Summary 232

References 233

9 Homogeneous Electrocatalytic CO2Hydrogenation 237
Cody R. Carr and Louise A. Berben

9.1 CO2Reduction to CH Bond-Containing Compounds: Formate or Formic Acid 237

9.1.1 Survey of Catalysts 238

9.1.1.1 Group 9 Metal Complexes 238

9.1.1.2 Group 8 Metal Complexes 241

9.1.1.3 Nickel Complexes 244

9.1.1.4 Iron and Iron/Molybdenum Clusters 246

9.1.2 Hydride Transfer Mechanisms in CO2Reduction to Formate 247

9.1.2.1 Terminal Hydrides 247

9.1.2.2 Bridging Hydrides 248

9.1.3 Kinetic Factors in Catalyst Design 249

9.1.3.1 Roles of MetalLigand Cooperation 249

9.1.3.2 Roles of Multiple MetalMetal Bonds 250

9.1.4 Thermochemical Considerations in Catalyst Design 253

9.1.4.1 Selectivity for Formate over H2 as a Function of Hydricity 254

9.1.4.2 Solvent Dependence of Hydricity 255

9.2 Prospects in Electrocatalysis: CO2Reduction Beyond Formation of One CH

Bond 255

References 257

10 Recent Advances in Homogeneous Catalysts for Hydrogen Productionfrom Formic Acid and Methanol 259
Naoya Onishi and Yuichiro Himeda

10.1 Introduction 259

10.2 Formic Acid Dehydrogenation 260

10.2.1 Organic Solvent Systems 260

10.2.1.1 Ru 260

10.2.1.2 Ir 266

10.2.1.3 Fe 268

10.2.2 Aqueous Solution Systems 270

10.2.2.1 Ru 270

10.2.2.2 Ir 272

10.3 Aqueous-phase Methanol Dehydrogenation 275

10.3.1.1 Ir 279

10.3.1.2 Non-precious Metals 279

10.4 Conclusion 281

References 282

Index 285

Prefacexi

1 Introduction1

Yuichiro Himeda and Matthias Beller

1.1 Direct Use of CO2 1

1.2 Chemicals from CO2 as a Feedstock 2

1.3 Application and Market Studies of CO2 Hydrogenation Products 4

1.3.1 Formic Acid/Formate 4

1.3.2 Methanol 4

1.3.3 Methanation 5

1.3.4 Energy Storage 6

1.4 Supply of Materials 6

1.4.1 CO2 Supply 6

1.4.2 Energy and H2 Supply 8

1.5 Political Aspect: Tax 9

1.6 Conclusion and Perspectives 9

References 10

2 Homogeneously Catalyzed CO2Hydrogenation to Formic Acid/Formate by Using Precious Metal Catalysts13

Wan-Hui Wang, Xiujuan Feng and Ming Bao

2.1 Introduction 13

2.2 Ir Complexes 14

2.2.1 Ir Complexes withN,N-ligands 14

2.2.1.1 TautomerizableN,N-ligands with OH Groups 14

2.2.1.2N,N-ligands with NH Group 30

2.2.1.3 TautomerizableN,N-ligands with OH and NH Groups 32

2.2.1.4 TautomerizableN,N-ligands with Amide Group 33

2.2.2 Ir Complexes withC,N- andC,C-ligands 34

2.2.3 Ir Complexes with Pincer Ligands 35

2.3 Ru Complexes 37

2.3.1 Ru Complexes with Phosphorous Ligands 38

2.3.2 Ru Complexes withN,N- andN,O-ligands 40

2.3.3 Ru Complexes with Pincer Ligands 41

2.4 Rh Complexes 46

2.5 Summary and Conclusions 49

References 49

3 Homogeneously Catalyzed CO2Hydrogenation to Formic Acid/Formate with Non-precious Metal Catalysts53

Luca Gonsalvi, Antonella Guerriero and Sylwia Kostera

3.1 Introduction 53

3.2 Iron-Catalyzed CO2 Hydrogenation 55

3.2.1 Non-pincer-Type Iron Complexes 56

3.2.2 Pincer-Type Iron Complexes 63

3.3 Cobalt-Catalyzed CO2 Hydrogenation 69

3.4 Nickel-Catalyzed CO2 Hydrogenation 73

3.5 Copper-Catalyzed CO2 Hydrogenation 77

3.6 Manganese-Catalyzed CO2 Hydrogenation 78

3.7 Other Non-precious Metals for CO2 Functionalization 81

3.8 Conclusions and Perspectives 85

References 86

4 Catalytic Homogeneous Hydrogenation of CO2to Methanol89

Sayan Kar, Alain Goeppert and G. K. Surya Prakash

4.1 Carbon Recycling and Methanol in the Early Twenty-First Century 89

4.2 Heterogeneous Catalysis for CO2 to Methanol 91

4.3 Homogeneous Catalysis An Alternative for CO2 to Methanol 92

4.3.1 Benefits of Homogeneous Catalysis 92

4.3.2 CO2 Hydrogenation to Methanol Through Different Routes 92

4.3.3 The First Homogeneous System for CO2 Reduction to Methanol 93

4.3.4 Indirect CO2 Hydrogenation 94

4.3.5 Direct CO2 Hydrogenation 97

4.3.5.1 Through Formate Esters 97

4.3.5.2 Through Oxazolidinone or Formamides 100

4.3.6 CO2 to Methanol via Formic Acid Disproportionation 108

4.4 Conclusion 109

References 110

5 Theoretical Studies of Homogeneously Catalytic Hydrogenation of Carbon

Dioxide and Bioinspired Computational Design of Base-Metal Catalysts113

Xiuli Yan and Xinzheng Yang

5.1 Introduction 113

5.2 H2 Activation and CO2 Insertion Mechanisms 114

5.2.1 Hydrogen Activation 114

5.2.2 Insertion of CO2 115

5.3 Hydrogenation of CO2 to Formic Acid/Formate 118

5.3.1 Catalysts with Precious Metals 118

5.3.2 Catalysts with Non-noble Metals 128

5.4 Hydrogenation of CO2 to Methanol 133

5.5 Summary and Conclusions 142

References 145

6 Heterogenized Catalyst for the Hydrogenation of CO2to Formic Acid or Its Derivatives149

Kwangho Park, Gunniya Hariyanandam Gunasekar and Sungho Yoon

6.1 Introduction 149

6.2 Molecular Catalysts Heterogenized on the Surface of Grafted Supports 150

6.3 Molecular Catalysts Heterogenized on Coordination Polymers 157

6.4 Molecular Catalysts Heterogenized on Porous Organic Polymers 161

6.5 Concluding Remarks and Future Directions 172

References

173

7 Design and Architecture of Nanostructured Heterogeneous Catalysts for CO2Hydrogenation to Formic Acid/Formate179

Kohsuke Mori and Hiromi Yamashita

7.1 Introduction 179

7.2 Unsupported Bulk Metal Catalysts 180

7.3 Unsupported Metal Nanoparticle Catalysts 181

7.3.1 Metal Nanoparticles Without Stabilizers 181

7.3.2 Metal Nanoparticles Stabilized by Ionic Liquids 182

7.3.3 Metal Nanoparticles Stabilized by Reverse Micelles 183

7.4 Supported Metal Nanoparticle Catalysts 184

7.4.1 Metal Nanoparticles Supported on Carbon-Based Materials 184

7.4.2 Metal Nanoparticles Supported on Nitrogen-Doped Carbon 185

7.4.3 Metal Nanoparticles Supported on Al2O3 189

7.4.4 Metal Nanoparticles Supported on TiO2 191

7.4.5 Metal Nanoparticles Supported on Surface-Functionalized Materials 194

7.5 Embedded Single-Atom Catalysts 198

7.6 Summary and Conclusions 202

References 203

8 Heterogeneously Catalyzed CO2Hydrogenation to Alcohols207

Nat Phongprueksathat and Atsushi Urakawa

8.1 Introduction 207

8.2 CO2 Hydrogenation to Methanol Past to Present 207

8.2.1 Syngas to Methanol 207

8.2.2 CO2 to Methanol 208

8.2.3 Thermodynamic Consideration Chemical and Phase Equilibria 212

8.2.4 Catalyst Developments 215

8.2.5 Active Sites and Reaction Mechanisms: The Case of Cu/ZnO Catalysts 217

8.2.6 Beyond Industrial Cu/ZnO/Al2O3 Catalysts 223

8.3 CO2 Hydrogenation to Ethanol and Higher Alcohols Past to Present 226

8.3.1 Background 226

8.3.2 Catalysts, Active Sites, and Reaction Mechanisms 227

8.3.2.1 Modified-Methanol Synthesis Catalyst 227

8.3.2.2 Modified FischerTropsch Catalysts 230

8.3.2.3 Rhodium-Based Catalysts 231

8.3.2.4 Modified Molybdenum-Based Catalysts 232

8.4 Summary 232

References 233

9 Homogeneous Electrocatalytic CO2Hydrogenation237

Cody R. Carr and Louise A. Berben

9.1 CO2 Reduction to CH Bond-Containing Compounds: Formate or Formic Acid 237

9.1.1 Survey of Catalysts 238

9.1.1.1 Group 9 Metal Complexes 238

9.1.1.2 Group 8 Metal Complexes 241

9.1.1.3 Nickel Complexes 244

9.1.1.4 Iron and Iron/Molybdenum Clusters 246

9.1.2 Hydride Transfer Mechanisms in CO2 Reduction to Formate 247

9.1.2.1 Terminal Hydrides 247

9.1.2.2 Bridging Hydrides 248

9.1.3 Kinetic Factors in Catalyst Design 249

9.1.3.1 Roles of MetalLigand Cooperation 249

9.1.3.2 Roles of Multiple MetalMetal Bonds 250

9.1.4 Thermochemical Considerations in Catalyst Design 253

9.1.4.1 Selectivity for Formate over H2 as a Function of Hydricity 254

9.1.4.2 Solvent Dependence of Hydricity 255

9.2 Prospects in Electrocatalysis: CO2 Reduction Beyond Formation of One CH

Bond 255

References 257

10 Recent Advances in Homogeneous Catalysts for Hydrogen Production

from Formic Acid and Methanol259

Naoya Onishi and Yuichiro Himeda

10.1 Introduction 259

10.2 Formic Acid Dehydrogenation 260

10.2.1 Organic Solvent Systems 260

10.2.1.1 Ru 260

10.2.1.2 Ir 266

10.2.1.3 Fe 268

10.2.2 Aqueous Solution Systems 270

10.2.2.1 Ru 270

10.2.2.2 Ir 272

10.3 Aqueous-phase Methanol Dehydrogenation 275

10.3.1.1 Ir 279

10.3.1.2 Non-precious Metals 279

10.4 Conclusion 281

References 282

Index285

Informationen zu E-Books

Alle hier erworbenen E-Books können Sie in Ihrem Kundenkonto in die kostenlose PocketBook Cloud laden. Dadurch haben Sie den Vorteil, dass Sie von Ihrem PocketBook E-Reader, Ihrem Smartphone, Tablet und PC jederzeit auf Ihre gekauften und bereits vorhandenen E-Books Zugriff haben.

Um die PocketBook Cloud zu aktivieren, loggen Sie sich bitte in Ihrem Kundenkonto ein und gehen dort in den Bereich „Downloads“. Setzen Sie hier einen Haken bei „Neue E-Book-Käufe automatisch zu meiner Cloud hinzufügen.“. Dadurch wird ein PocketBook Cloud Konto für Sie angelegt. Die Zugangsdaten sind dabei dieselben wie in diesem Webshop.

Weitere Informationen zur PocketBook Cloud finden Sie unter www.meinpocketbook.de.

Allgemeine E-Book-Informationen

E-Books in diesem Webshop können in den Dateiformaten EPUB und PDF vorliegen und können ggf. mit einem Kopierschutz versehen sein. Sie finden die entsprechenden Informationen in der Detailansicht des jeweiligen Titels.

E-Books ohne Kopierschutz oder mit einem digitalen Wasserzeichen können Sie problemlos auf Ihr Gerät übertragen. Sie müssen lediglich die Kompatibilität mit Ihrem Gerät prüfen.

Um E-Books, die mit Adobe DRM geschützt sind, auf Ihr Lesegerät zu übertragen, benötigen Sie zusätzlich eine Adobe ID und die kostenlose Software Adobe® Digital Editions, wo Sie Ihre Adobe ID hinterlegen müssen. Beim Herunterladen eines mit Adobe DRM geschützten E-Books erhalten Sie zunächst eine .acsm-Datei, die Sie in Adobe® Digital Editions öffnen müssen. Durch diesen Prozess wird das E-Book mit Ihrer Adobe-ID verknüpft und in Adobe® Digital Editions geöffnet.

Weitere Artikel vom Autor "Yuichiro Himeda"

Alle Artikel anzeigen